丘成栋的个人简介
丘成栋教授,台湾交通大学教授林文伟、清华大学教授。在数学、应用数学与控制论、计算机科学、金融数学、生物信息等国际前沿研究领域取得了大量原始创新成果,先后发表两百多篇学术论文,其中包括《PNAS》、《Ann.ofMath.》、《Invent.Math.》等等这样的国际顶尖数学刊物。他解决了复几何和奇点理论中的一些国际著名的猜想。是第一个成功地将李代数用来研究代数几何中的超曲面奇点,如今这个代数被同行称为Yau代数。丘成栋教授及他的合作者还解决了非线性滤波理论中的一个中心的问题(解决了Mitter猜想),完全解决了非线性滤波器的理论问题,这对现代工业,包括国防工业将会有深远的影响。在生物信息方面,他在DNA及蛋白质2维表示法方面的成果发表在世界顶尖杂志《NucleiAcidResearch》上。最近,他开创了naturalvector方法来表示基因组和蛋白质。
2019年6月9日,获第八届世界华人数学家大会陈省身奖。
人物简介
丘成栋,男,原籍广东省梅州市 蕉岭县,1952年生于香港,曾任美国 伊利诺伊大学芝加哥分校数学、统计和计算机科学系 特聘教授,该校信息控制实验室主任,IEEE Fellow,国际顶尖数学专业杂志《Journal of Algebraic Geometry》创始人与主编、《Communications in Information and Systems》创始人与主编。
中文名丘成栋出生日期1952年外文名Stephen Yau年龄60岁教育经历Ph.D (1976), The state University of New York at Stony Brook职业美国依利诺依大学任教 M.A. (1974), The State University of New York at Stony Brook研究方向代数几何 自动控制理论个人成就
2011年6月,著名数学家丘成栋(Stephen Yau)教授辞去美国伊利诺伊大学 芝加哥分校的永久职位,接受 清华大学邀请,全职到 清华大学数学科学系工作。他已来到清华大学并办完入职手续,成为了清华大学的一名正式教授。
此后,丘成栋教授将全身心地投入到清华大学数学学科的发展与建设,为清华大学数学学科的教学科研、学科建设、人才队伍建设和国际合作交流等作出贡献。丘成栋教授1976年获美国纽约州立大学石溪分校博士学位,历任美国普林斯顿高等研究院成员(1976-77),哈佛大学Benjamin Pierce助理教授(1977-80),伊利诺伊大学芝加哥分校数学、统计和计算机科学系副教授(1980-84)、教授(1984-)、特聘教授(2005-)。
他开创了natural vector方法来表示基因组和蛋白质。 如果两个基因组或蛋白质从生物意义上互相接近,那么它们的natural vector具有很近的距离。因此,natural vector方法不仅对基因组和蛋白质提供了快速、唯一的表示,而且成为有力的聚类和预测工具。基于natural vector方法,丘教授计划构造一个 基因组数据库和一个 蛋白质数据库。与当前的基因组或蛋白质数据库不同,他构造的新的数据库将支持对所有已知的基因组和蛋白质进行同时的比较研究。公共蛋白质数据库记录了当前有超过八百万的蛋白质存在。在如今的方法中,只有natural vector方法可以完成同时比较这个“不可能的任务”。丘教授计划在清华大学组建一个团队来开展这个科研项目。
荣誉记录
2019年6月9日,获第八届世界华人数学家大会陈省身奖。
代表论文
Proc. Nat. Acad. Sci., U.S.A.:
1. Index theory for the boundaries of complex analytic varieties, Proc. Nat. Acad. Sci., U.S.A. , 77 (1980), 1248-1249. pdf 2. Criterion for biholomorphic equivalence of isolated hypersurface singularities, (with John N. Mather), Proc. Nat. Acad. Sci., U.S.A. 78 (1981), 5946-5947. pdf 3. Continuous family of finite-dimensional representations of a solvable Lie algebra arising from singularities, Proc. Nat. Acad. Sci., U.S.A. 80 (1983),7694-7696. pdf Annals of Math.: 4. Kohn-Rossi cohomology and its application to the complex Plateau problem,I, Annals. of Math., 113 (1981) 67-110. pdf 5. Counterexample to boundary regularity of strongly pseudoconvex CR submanifold: An addendum to the paper of Harvey-Lawson (with H.S. Luk), Annals of Math., 148(1998), 1153-1154. pdf Invent. Math.: 6. The Signature of Milnor Fibers and Duality Theorem for Strongly Pseudoconvex Manifolds, Invent. Math., 46(1978), 81-97. pdf 7. Classification of Isolated Hypersurface Singularities by Their ModuliAlgebras, (with John N. Mather), Invent. Math., 69 (1982), 243-251. pdf 8. Variation of complex structures and variation of Lie algebras, (with Craig Seeley), Invent. Math., 99 (1990), 545-565. pdf Duke Math. J.: 9. Existence of L2-integrable holomorphic forms and lower estimates of T^1V, Duke Math. J. 48 (1981), 537-547. pdf Math. Ann.: 10. Two theorems on higher dimensional singularities, Math. Ann. 231 (1977), 55 -59. pdf 11. Equivalence between isolated hypersurface singularities, (with Max Benson), Math. Ann. 287 (1990), 107-134. pdf 12. Algebraic determination of isomorphism classes of the moduli algebras of ~E6 singularities (with Hao Chen, and Craig Seeley), Math. Ann. 318, (2000), 637-666. pdf Ann. Sci. Ecole Norm. Sup.: 13. Holomorphic symmetry, (with Blaine Lawson), Ann. Sci. Ecole Norm. Sup. 4e series, t. 20(1987), 557-577. pdf Annali della Scuola Normale Superiore di Pisa - Classe di Scienze: 14. An estimate of the gap of the first two eigen-values in the Schrodinger operator,(with I.M. Singer, Bun Wong and Shing-Tung Yau), Ann. Scuola Norm. Sup., Pisa, Classe di Scienze, Serie IV, Vol. XII, N.2 (1985), 319-333. pdf 15. Intersection lattices and the topological structures of complements of arrangements in CP^2 (with Tan Jiang), Ann. Scuola Norm. Sup. Pisa Cl.Sci (4), Vol. XXVI, (1998), 357-381. pdf Journal of European Mathematical Society: 16. Rigidity of CR morphisms between compact strongly pseudoconvex CR manifolds, Journal of European Mathematical Society, Vol 13,(2011),175-184. pdf 17. On number theoretic conjecture of positive integral points in 5-dimensional tetrahedron and a sharp estimation of Dickman-De Bruijn function (with Ke-Pao Lin, Xue Luo, and Huaiqing Zuo), 33pp. (to appear) Journal of European Mathematical Society (2013). pdf J. Differential Geometry: 18. Durfee conjecture and coordinate free characterization of homogeneous singularities, (with Yi- Jing Xu), Journal of Differential Geometry 37 (1993), 375-396. pdf 19. Moduli and Modular groups of a class of Calabi-Yau n-dimensional manifolds, n=3 (with Hao Chen), Journal of Differential Geometry, 54(2001), 1-12. pdf 20. Holomorphic De-Rham cohomology of strongly pseudoconvex CR manifolds with holomorphic S1-action (with Hing Sun Luk), Journal of Differential Geometry, 63(2003), 155-170. pdf 21. On a CR family of compact strongly pseudoconvex CR manifolds, (with X. Huang, H.S. Luk), Journal of Differential Geometry, Vol. 72, No.3, (2006), 353-379. pdf 22. Kohn-Rossi cohomology and its application to the complex plateau problem II (with H.S. Luk), Journal of Differential Geometry, Vol. 77, No. 1 (2007), 135-148. pdf 23. Higher order Bergman functions and explicit construction of moduli space for complete Reinhardt domains (with Rong DU), Journal of Differential Geometry, 82 (2009), 567-610. pdf 24. Kohn-Rossi cohomology and its application to the complex plateau problem, III, (with Rong Du), J. Differential Geometry, Vol. 90, (2012), 251-266. pdf Amer. J. Math.: 25. Hypersurface weighted dual graphs of normal singularities of surfaces, Amer. J. Math. 101 (1979), 761-812. pdf 26. Gorenstein singularities with geometric genus equal to two, Amer. J. Math. 101 (1979), 813-854. pdf 27. On strongly elliptic singularities, Amer. J. Math. 101 (1979), 855-884. pdf 28. S_n^1 invariant for isolated n-dimensional singularities and its application to moduli problems, Amer. J. Math. 104 (1982), 829-841. pdf 29. Various numerical invariants for isolated singularities, Amer. J. Math. 104 (1982), 1063-1100. pdf 30. Singularities defined by sl(2,C)invariant polynomials and solvability of Lie algebras arising from isolated singularities, Amer. J. Math. 108 (1986), 1215-1240. pdf 31. The multiplicity of isolated two-dimensional hypersurface singularities:Zariski problem, Amer. J. Math. 111 (1989), 753-767. pdf 32. A remark on moduli of complex hypersurface, Amer. J. Math., 113 (1990), 287-292. pdf 33. Solvability of the Lie algebras arising from singularities and non-isolatedness of the singularities defined by the invariant polynomials of sl(2,C), Amer. J. Math. 113 (1991), 773-778. pdf 34. Classification of gradient space as sl(2,C)-module I (with J. Sampson and Yung Yu), Amer. J. Math.114 (1992), 1147-1161. pdf 35. Some remarks on the local moduli of tangent bundles over complex surfaces (with W.S. Cheung and B. Wong), Amer. J. Math., 125 (2003), 1029-1035. pdf Trans. Amer. Math. Soc.: 36. Normal two-dimensional elliptic singularities, Trans. Amer. Math. Soc. 254 (1979), 117-134. pdf 37. On maximally elliptic singularities, Trans. Amer. Math. Soc. 257 (1980), 269-329. pdf Math. Res. Lett.: 38. An upper estimate of integral points in real simplices with application in singularity theory (with Letian Zhang), Math. Research Letter, Vol 13, No. 6, (2006), 911-922. pdf