贾保国

时间:2024-04-28 05:02:37编辑:小简

贾保国的个人简介

贾保国,男,博士,中山大学数学与计算科学学院教授、博士生导师,曾任科计系副系主任。

人物经历

教育背景

1994.09-1997.07,中山大学,数学系,博士

1985.09年-1987.07,河北师范大学,数学系,硕士

1980.09-1984.07,河北师范大学,数学系,本科

工作经历

2012.12--至今,中山大学,数学与计算科学学院,

2001.11--2012.11,中山大学,数学与计算科学学院

1999.07--2001.11,中山大学,数学与计算科学学院

1997.09--1999.07,中山大学,物理系,博士后

1987.07--1994.09,河北师范大学,数学系

访学经历

2007.11-2008.12,访问美国NebraskaUniversity-Lincoln

2014.11-2015.06,访问美国NebraskaUniversity-Lincoln

研究方向

时标动态方程,分数阶差分方程

学术成果

科研项目

国家自然科学基金面上项目,11271380,高阶时标动态方程解的振动性和渐近性,2013/01-2016/12, 60万元,在研,主持。

国家自然科学基金面上项目,10971232,二阶非线性时标动态方程及相关问题的研究,2010/01-2012/12, 27万元,已结题,主持。

发表论文

2018:

1)Baoguo Jia, Xiang Liu, Feifei Du and Mei Wang, The Solution of A New Caputo-like Fractional h-Difference Equation, Rocky Mountain Mathematics Journal,2018, to appear,

2017:

1)Baoguo Jia, Siyuan Chen, Lynn Erbe and Allan Peterson, Lyapunov Functional and Stability of Linear Nabla (q,h)-Fractional Difference Equations, Journal of Difference Equations and Applications, 2017, 23 (12), 1974-1985.

2)Baoguo Jia,Lynn Erbe and Allan Peterson, Asymptotic Behavior of Solutions of Fractional Nabla q-Difference Equations, Georgian Math. J.,2017,1-8

3) Xiang Liu, Baoguo Jia, Lynn Erbe and Allan Peterson, Existence and rapid convergence results for nonlinear Caputo nabla fractional difference equations, Electronic Journal of Differential Equations,2017,51, 1-16.

4)Baoguo Jia, Lynn Erbe, Chris Goodrich and Allan Peterson, The relation between Nabla fractional differences and Nabla integer differences, Filomat, 2017, 31 (6), 1741-1753.

5)Hongwu Wu, Baoguo Jia and Lynn Erbe, Oscillation criteria for second order superlinear dynamic equations with oscillating coefficients, Applied Mathematics Letters, 2017, 72, 29-34.

6) Lynn Erbe, Chris Goodrich, Baoguo Jia and Allan Peterson, Monotonicity results for delta fractional differences revisited, Math Slovaka, 2017, 67 (14), 895-906.

2016:

1)Baoguo Jia, Lynn Erbe and Allan Peterson, Comparison theorems and asymptotic behavior of solutions of Caputo fractional equations, International Journal of Difference Equations, 2016, 11 (2), 163-178.

2) Feifei Du,Baoguo Jia,Lynn Erbe and Allan Peterson, Monotonicity and convexity for nabla fractional (q,h)-differences,Journal of difference equations and applications,2016,22 (9), 1224-1243

3)Baoguo Jia,Lynn Erbe and Allan Peterson, Monotonicity and convexity for nabla fractional q-differences, Dynamic Systems and Applications,2016,25, 47-60.

4)Baoguo Jia,The asymptotic behavior of the Caputo delta fractional equations, Mathematical Methods in the Applied Sciences,2016,39, 5355-5364.

5)Lynn Erbe,Chris Goodrich,Baoguo Jia and Allan Peterson, Survey of the qualitative properties of fractional difference operators: monotonicity, convexity, and asymptotic behavior of solutions, Advances in Difference Equations,2016, 43, 1-31.

6)Qiaoshun Yang,Baoguo Jia and Zhiting Xu,Nonlinear oscillation of second order neutral dynamic equations with distributed delay, Mathematical Methods in the Applied Sciences,2016,39 (1), 202-213.

7) Boqun Ou, Quanwen Lin, Feifei Du and Baoguo Jia, An extended Halanay ineqa-lity with unbounded coefficient functions on time scales, Journal of Inequalities and Applications, 2016, 316, 1-11.

8) Hongwu Wu, Baoguo Jia, Lynn Erbe and Allan Peterson,Oscillation criteria for second order sublinear dynamic equations with oscillating coefficient, Applied Mathematics Letters, 2016, 61, 167-172.

2015:

1) Baoguo Jia,Lynn Erbe and Allan Peterson, Convexity for nabla and delta fractional differences, J. Difference. Equ. Appl.,2015,21 (4), 360-373.

2) Boqun Ou,Baoguo Jia and Lynn Erbe, A generalized Halanay-type inequality on time scales, Dynamic Systems and Applications,2015, 24 (6), 389-398.

3) Hongwu Wu,Baoguo Jia and Lynn Erbe,Theorems of Kiguradze-type and Belohorec-type revisited on time scales,Electronic Journal of Differential Equations, 2015, 71, 1-12.

4) Baoguo Jia,Lynn Erbe and Allan Peterson, Two monotonicity results for nabla and delta fractional differences, Archiv der Mathematik,2015,104 (5), 589-597.

5) Baoguo Jia,Lynn Erbe,Allan Peterson, Oscillation of n-th order linear dynamic equations on time scales,Communications in Applied Analysis,2012,16 (3), 447-458.

6) Baoguo Jia,Lynn Erbe and Allan Peterson, Comparison theorems and asymptotic behavior of solutions of discrete fractional equations, Electron J. Qual. Theory Differ. Equ., 2015, 89, 1-18.

7) Boqun Ou, Baoguo Jia and Lynn Erbe, An extended Halanay inequality of integral type on time scales, Electron J. Qual. Theory Differ. Equ.,2015, 38, 1-11.

8) Baoguo Jia,Lynn Erbe and Allan Peterson, Some relations between the Caputo fractional difference operators and integer order differences, Electronic Journal of Differential Equations,2015, 163, 1-7.

2014:

1) Qiaoshun Yang,Lynn Erbe and Baoguo Jia, Oscillation of certain Emden-Fowler dynamic equations on time scales, Abstract and Applied Analysis, 2014, 1-7.

2) Baoguo Jia,Lynn Erbe and Allan Peterson, A Butler-type oscillation theorem for second order dynamic equations on discrete time scales, J. Difference Equation and Applications,2014,20, 392-405.

3) Baoguo Jia,Lynn Erbe and Raziye Mert, A Halanay-type inequality on time scales in higher dimensional spaces, Mathematical Inequalities and Applications,2014,17 (3), 813-821.

4)Baoguo Jia,Lynn Erbe and Raziye Mert,Comparison theorems for even order dynamic equations on time scales,Dynamic Systems and Applications,2014, 23, 221-234.

5) Lynn Erbe,Baoguo Jia and Raziye Mert,A wong-type necessary and sufficient condition for nonoscillation of second order linear dynamic equations on time scales, Communication in Applied Analysis, 2014, 18, 41-58.

2013:

1) Baoguo Jia,Oscillation for second order dynamic equations with mixed nonlinearities, Dynamics of Continuous, Discrete and Impulsive Systems, Series A Mathematical Analysis,2013,20, 423-432.

2) Baoguo Jia,Lynn Erbe and Allan Peterson,An oscillation theorem for second order dynamic equations on time scales,Applied Mathematics and Computation,2013,219, 10033-10342

2012:

1) Baoguo Jia,Lynn Erbe and Allan Peterson,Oscillation of n-th order linear dynamic equations on time scales,Communications in Applied Analysis,2012, 16 (3), 447-458.

2) Lynn Erbe,Baoguo Jia and Allan Peterson,On the asymptotic behavior of solutions of Emdenu2013Fowler equations on time scales, Annali di Matematica Pura ed Applicata, 191 (2), 205-217

3) Quanwen Lin and Baoguo Jia, Nonoscillatory solutions of second order superlinear dynamic equations with integrable coefficients,Abstract and Applied Analysis,2012, 1-16.

4) Baoguo Jia,Lynn Erbe and Allan Peterson,Oscillation Theorems for Second Order Sublinear Dynamic Equations on Time Scales,Dynamics of Continuous, Discrete and Impulsive Systems, Series A, Mathematical Analysis,2012, 19, 615-626

2011:

1) Baoguo Jia, Lynn Erbe and Allan Peterson, Kiguradze-typeoscillation theorem for second order superlinear dynamic equation on timescales, Canadian Mathematical Bulletin, 2011, 54 (4), 580-592.

2) Lynn Erbe, Baoguo Jia and Allan Peterson, Belohorec -type oscillation theorem for second order sublineardynamic equations on time scales, Math. Nachr, 2011, 284, 1658-1668.

3) Baoguo Jia, Kwong-Wong-Type integral equation on time scales, Electronic Journal of differential Equations, 2011, 25, 1-14.

4) Baoguo Jia, A new oscillation criterion for two-dimensional dynamic systems on time scales, Kamkang Journal of Mathematics, 2011, 42 (2), 237-244.

5) Lynn Erbe, Baoguo Jia and Allan Peterson, Oscillation of n-th order superlinear dynamic equations on time scales, Rocky Mountain Journal of mathematics, 2011, 41 (2), 471-491.

6) Lynn Erbe, Baoguo Jia and Allan Peterson, Asymptotic behavior of n-th order Sublinear dynamic equations on time scales,Communications in Applied Analysis, 2011, 15, 183-194.

上一篇:黄志辉(清代)

下一篇:胡绩伟